Yapay Sinir Ağları
Genel Bilgi ve Haberler
Günümüzde örneklerinin sürekli arttığı yapay zeka konuları gelecekte çok daha fazla hayatımızda olacak hatta yapay zekanın ulaşmadığı alan kalmayacak !
Gelişen teknoloji ile birlikte artan işleme ve hesaplama gücü, buna mukabil, karmaşık simülasyonların yapılması, gelişmiş yapay zeka teknolojilerini kullanılarak mümkün hale gelmiştir. Yapay zeka biliminin araştırma alanlarından biri olan Yapay Sinir Ağları (YSA), bilgisayarların öğrenmesine yönelik çalışmaları kapsamaktadır. Günümüzde bilgisayarlar ve bilgisayar sistemleri yaşamımızın vazgeçilmez bir parçası haline gelmiştir. Hemen hemen her alanda bilgisayarlardan faydalanılmaktadır. Bilgisayarlar, geçmiş yıllarda sadece hesap yaparken ya da veri transferleri gerçekleştirirken zaman içerisinde büyük miktardaki verileri özetleyen ve bu verileri kullanarak olaylar hakkında yorumlar yapabilen özellik kazanmıştır. Günümüzde ise bilgisayarlar hem olaylar hakkında karar verebilmekte hem de olaylar arasındaki ilişkiyi öğrenebilmektedir. Matematiksel olarak formülasyonu kurulamayan ve çözülmesi mümkün olmayan problemler de bilgisayarlar tarafından çözülebilmektedir.
Yapay sinir ağının genel bir tanımı yapılması gerekirse; yapay sinir ağı, insan beyninin çalışma ve düşünebilme yeteneğinden yola çıkılarak oluşturulmuş bir bilgi işlem teknolojisidir. YSA, bir başka deyişle, biyolojik sinir ağlarını taklit eden bilgisayar programlarıdır. YSA’ların öğrenme özelliği sayesinde geleneksel teknikler için çok karmaşık kalan problemlere çözüm sağlayabilmektedirler. Yine öğrenme yeteneği sayesinde, bilinen örnekleri kullanarak daha önce karşılaşılmamış durumlarda genelleme yapabilmektedir. Doğrusal olmayan, çok boyutlu, karmaşık, kesin olmayan, eksik, kusurlu, hata olasılığı yüksek veriler ve problemlerin çözümü için özellikle bir matematiksel model ve algoritmanın bulunmaması durumlarında yaygın halde yapay sinir ağları uygulamaları yapılabilmekte ve başarılı sonuçlar elde edilmektedir. Doğrusal olmayan, çok boyutlu, karmaşık, kesin olmayan, eksik, kusurlu, hata olasılığı yüksek veriler ve problemlerin çözümü için özellikle bir matematiksel model ve algoritmanın bulunmaması durumlarında yaygın halde yapay sinir ağları uygulamaları yapılabilmekte ve başarılı sonuçlar elde edilmektedir.
Bu modellemelerin gerçekleştirilmesini sağlayan önemli bir uygulama alanı ise “Yapay Sinir Ağları”dır. Sıradan yazılımın kendi kendini düzenleyebilen türlerine yönelik çalışmalar olmuştur, ancak makine öğrenimi fikrini yükseltmiş olan şey, yapay sinir ağlarıdır. YSA sadece sıradan bir dijital bilgisayar üzerinde çalışan bir taklit olarak bulunmaktadır, fakat bu taklidin içinde gerçekleşen şey, klasik bilişimden temel olarak çok farklıdır. Yapay zeka (artificial intelligence) kavramı ile insanın en önemli özellikleri olan düşünebilme ve öğrenebilme yetenekleri en önemli araştırma konuları durumuna gelmiştir. Özellikle son yıllarda bilgisayar kullanımının hızla yaygınlaşması sonucunda yapay zeka çalışmaları da bir ivme kazanmıştır. Bilgisayarın icadından beri, bilgisayarların asla yapamayacağı şeylerin olduğu hakkında konuşan insanlar olmuştu. İster satrançta büyük bir ustayı yenmek olsun, ister yarışma programını kazanmak olsun, bu tahminler her zaman yanlış çıkmıştı. Bununla beraber, olumsuz konuşan böyle insanlardan bazıları, bilgisayar biliminde her zaman daha iyi bir temele sahiptir. Eğer bilgisayarların nasıl çalıştığını bilseydiniz, fiilen erişilmesi imkansız olacak hedefler bulunduğunu bilirdiniz. İnsanların duygularını yüz ifadelerinden tanımak. Geniş bir el yazısı çeşitliliğini okumak. Konuşulan dildeki kelimeleri düzgün şekilde belirlemek. Yoğun trafikte yarı bağımsız olarak araç sürmek. Bilgisayarlar şimdi tüm bu şeyleri ve bir hayli daha fazlasını yapabilmeye başlıyorlar.
Bir beyin, her biri kendi programlamasına sahip olabilen ve dıştan gelen bir hükme ihtiyacı olmadan karar verebilen milyarca küçük ve son derece basit birimi birleştirir. Her sinir, kendi basit, önceden belirlenmiş kurallarına göre çevresindeki sinirlerle çalışır ve etkileşir. Yapay bir sinir ağı tam olarak aynı şeydir fakat yazılım ile taklit edilir. Diğer bir deyişle, dijital bir bilgisayar kullanarak, taklit sinir ağımızın sahip olduğu sinirlerin yerine çalışan, yoğun şekilde birbirine bağlanmış bir deste küçük programın taklidini çalıştırırız. Veri YSA’ya girer ve ilk “sinir” tarafından üzerinde bazı işlemler gerçekleştirilir, bu işlemler, sinirin bu özel nitelikli veriye nasıl davranacağının programlanmasıyla belirlenmektedir. Ardından, benzer bir şekilde seçilmiş olan bir sonraki sinire iletilir, böylece bir başka işlem seçilip gerçekleştirilebilir. YSA durumunda bunlar, bir arama algoritmasının sonuçlarından, rastgele üretilen sayılara, araştırmacılar tarafından el ile girilen kelimelere kadar, olmasını istediğimiz herhangi bir şeydir. O halde, özetlemek gerekirse: yapay sinir ağları temel olarak, taklit edilen beyinlerdir. Fakat, yazılım “sinirlerimize”, temel olarak istediğimiz herhangi bir programlamayı verebileceğimizi akılda bulundurmak önemlidir; sahip oldukları kuralları ayarlamayı deneyebiliriz ve böylece bir insan beyni gibi davranabilirler, fakat onları daha önce hiç hesaba katmadığımız sorunları çözmek için de kullanabiliriz.
YSA’lar nasıl çalışıyor? Beynin hücresel yapısını taklit edebilmek bilimsel olarak çok ilginçtir, ama eğer nasıl içeri gireceğimi ve her küçük alt oyuncuyu nasıl programlayacağımı biliyorsam ve girdilerim her zaman istediğim çıktılarıma işleniyorsa, o halde neden bir YSA’ya ihtiyaç duyayım? Başka bir deyişle bir YSA’nın yapısı, belirli bir sorunu çözmek amacıyla bir tanesini kasıtlı olarak inşa etmenin, YSA’nın kendisini bir parça lüzumsuz hale getiren, sorunun böylesine derin bir yeterli bilgisini ve çözümlerini gerektirdiği anlamına gelir.
Bununla beraber, bir tek karmaşık oyuncu ile çalışmaktansa pek çok basit oyuncuyla çalışmanın büyük bir üstünlüğü vardır: basit oyuncular kendini düzeltebilir.
YSA’lar çok değişik alanlarda kullanılabilir. Çok daha karmaşık YSA’lar, örneğin bir Google görsel arama sonucundaki hayvan türünü doğru şekilde tanımlamak gibi daha karmaşık hedefler için uğraşabilir. Bu yüzden “makine öğrenme” algoritmalarını programlayabilmek, şu an dünyada en çok rağbet gören yetenek takımlarından biridir. Önümüzdeki yüzyılda sorunları çözmek yerine, bilgisayarlara onları bizim için çözmeyi öğretmekle pekâla daha çok meşgul olabiliriz.
Yazan:Ali Rıza ÖZDEMİR
Kaynakça: http://www.derinogrenme.com/2017/03/04/yapay-sinir-aglari/
https://ahmetcevahircinar.com.tr/2016/07/23/yapay-sinir-agi-nedir/
https://yapayzeka.ai/yapay-sinir-aglarinin-calisma-prensibi/